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NW upli:it fi.nitc diffarea:t me:hod6 ●re
developed for ●rproxi=atins the di~co:tisueus time de-
pendmt solutions ef aonlhear hyperbclir conaemstion
laws , The u,LlysiE iIS based on the mezhd ef limes
•~;roa:h cf deeou~lfig the ●PSCC eat tfst discre:izm-
tions ant ●c61yzin& uch fadepeadently before combin-
inE th= intc ● cocpoEitc methnd. Pmrciculer ●ttem-
tion it giver. ●alyzir.g to high order ●pmtiel differ-
ences, ●rtificial disfiipation ●nd th~ ●ccurate ●pprox-
imetion of boundary condition. Both ● t.ird order
iterated leap-frog predictor-co-actor and ● ●econd
order iterated Runge-F.utta method●re 8hom to beve
●xcellent stability ●nd accuracy properties for the
time fmtegration. These methods me A-stablo mhm
iterated to convmganca and htve the mpeciel property
of allovi.ng for local Improvmznta m the stability
●nd ●ccuracy of the cmputed wl ion.

‘ 5 ti&Hi&&4 orThe muer 10 deshn
enaimaar c~kuct a nu&rlcel +ethod 8pacielly tey-
lormd to a specific problem. The emelyais raquiraa
an ●l~entsry bowledge of the timeritel eolu~”.oo of
ordinary ditferanthl ●quetionm, flmite diffl.tan~-
theory end gas d~amica.
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1. TKTROLWCTIO5

The nume:ical solution of coneematioz laus it
● h~ghly complicated ●rk Froblem-dependen: proceca.
ThE ●olutioc uwe:ly contains dynamic interactions be-
twe= shock waves, rarefection vavea and contact dLa-

.eontinuities. A method dwelopet for ● particular teat
problen my or SY not wrk for ●nether *th stronger
(or ueeker)●hockc and contact diecontimuitiaa.
Metbodsvhi:h work well b me space dimension may or
may mot be eedJy utended to two or three dtiewions.

Tba mnalymia tm this report ie baaed on ●ol~ing
eyetmc of coneenstion lawa in one epace dimmsion,
Wa recognLze that there emist many mxcellent methods
to titesrata Systm of one4fmneiomal cnme~ation
laws. The ●ddition of an?ther nwmrical method ue-
•ie~ OdY for theea ●quetf.ona uould mot contribute
●ignificmmtly to the ●dv~ncemeut of ●ciaitific comput-
ing - mleaa it generallzc~ to Mghar ●petiel dimen-
●innsm Ue elw ruo@ae t~w there iB little hope of
gaeralfsfag ● method which fail- h one dimnaion to
ome diet -rke in higher dimeneioma.

The ●pproach 18 baeed on the philaeophy of the
method of lines (MOL). (Byron (1976)). In tha mathod
of linas, the ●pece ●d time discrethationa of ●

partial differmotial equation(PDE)●re d-coupled end
amalywd Independently. First ● me-hod is ●dected to
diecretica the differential ●quation in mpaca ●nd in-
corporate the botmdary cnmditiona. The ●pectrumof
thie diecrate operator la then ueed ●e ● guide to
choosa en ●ppropriate mtlmd to integrata the •~~a-
tiome through t~e.

The dimeipative ●ffects of ● numerical method
are cmcid to constructing ralieble ●athodm for con-
servation lawe. This ie particularly true when the
●olution im diecontizmnus aa in ● dtock weva or cnn-
tact dimcontiauity. (All variebles ●re discontinuous
acroee ● ●hnck wave, vhile ●croas ● contact diacontin-
aity the deneity in diecoatimuoua ●nd tha praaaure end
valocity ●a continuous), ‘he n~rical diaeipatim
ten be ●hepd or controlled by ●dding ●n ●rtificial
dieeipetion tem ●xplicitly to tha different-l r,que-
tf.tm. This die~lpation ia the lewim~ r?.ncatir,n
●rror in the numarical approxisatiori enG is chosan on
the bwie of tha ●tpacted fo~ of the enlutlon. For
eXAMPla, more dioeipatintt ie ●dded to calculatitna
where there ●re ●trong ●brick wave imeractiona then
when tlm important aepect of the calculation la to
detmmbe the locetinn of a contact discontinuity.

Chooafag ●n ●ccurate method to ●ccomplieh eech
of thaee tseka, space mnd time diecr@ticatlon and in-
corporatit.~ artificial dieaipetion b the ntmericel
dutinn, determfaee the eucceee of the calculation.in
Iectlene 111 throuoh VI ue will commidm each choice
fndepmdently and combioe thm in Section VII to
develop● clsae of particularly Sood ●xplicit finite
differanca uthoda. In Bectton VIII, ve preeent wme
ntmarical mmemplea to fllumtrate the propartiee of the
diffrrmmt wthoda arid ●elyse their reeulta in I
~ryo Section IX.



whara u dmotes the outward 00* to tbt bouacs:y.

WvinS tht tim derivative under the I.ntegr&l
●ign 8nd ●pFlylmg the divergencetheorec EG.
be r~ittti ●s

J~U+divF(k’)dx-O .
~acj J

By letting the vol-e V shrink to ● point we
the ●ymtem of PDEa

a
x ‘J

+divF (w) - 0, j -1,2,. ..,N
~

(2.1) can

(2.2)

obtain

(2.3)

●t ~ery point where W end F ●re differentiable,

In one space dia=eion Eq. (2.3) ten be written
im vector form ●s

Wt + F(d)=- o (2,4)

or
Wt + G(W)L’= M O :2.5)

where G 18 the N by N mtria gradient of Fvith
reepect to W.

Equetinn (2.5) ie a !ir@t-order q’uasi-limur
●yetem of PDEm. This ●yetam 16 hyperbolic arsd well-
poaed if the ●if@nva2ues of G ●re dietimt and real.
Theee ●igenvaluesi, called the characteristic veloci-
ties, ●e the local ●ignal epemds at which ●herp aLe-
turbuces propogatm.

It is wall kwwn tlut a ●yetm of rtonlimear con-
senation lews -y fail to have r contbuoue solution
●fter a finite time. Since conmerv~tion lhwe me de-
rived frm integral ra.latione (2.1) these Smeralized
solutions mey ●till be ●dmitted ●s long me they are
measurable ●nd bounded. Tlmre ●ze Imstmcen, ●e im
the Euler ●quetione of goe d~ice, thet there my be
many different temera:imd solutione ●tiefimg Eq.
(2.1) @th tb came Irdthl data. Wthin this ●et
only one of theee colutione bee ●y physical signifi-
cance. Am important consideration ir constructing a
nmerical method ic tn build ● wclwAniem into the
difference ●chine that will automatically cbnme the
physically relevent eolution.

The phymicelly relevant aoluticm met eetiefy
the differential ●quatiom (2.4) in emoth ?@siona end
fulfi:l two additional cnmtitutive rakiom ●crose
enY die:omtimu’tiee in tha flow. The firct conmitu-
tive relatim, celled the Renkine-Slugomiot jAMP con-
ditinne, ●taces that the diecontinuitymimt propetato
with speed o cetiofins the j- ccnditime

UO!jJ- fFj(Wl , j-l,?,o..,w .

Sfere [ 1 denotae the jmp of the quantity ~ brac~te
●cross the di~cmtimuity. Theee jmp comditdoma ●re

Tk,e me:hod~ developed in thit paper will be de~-
crib-: it te~s o? tht Euler ●queticn6 of gas s!>=.a:i:s.
Hoieve:, mas: of the technique~ cnd re~ul:c art ●qua:ly
vklid for othe: hyperbolic systems. F~r ● fu?:her dis-
cussion of tht uathm:ica! theory of geners! hyper-
bolic ●ystem of conservation laws wc refer th~ reader
t~ kX (1S373) -i (1976).

Euler Equations
The ont4imenEional EulerIan ●quationv of gas

d~c6 ceE be written in divergence fore ●s

Ut + F(k)= - 0 , (2.6)

()
P o

um~, ()F(U) -UK+ p ,

E Pu

where o = maes density, u = velocity, m = OU - moman-
tsm, E - p(I+4u2)= total energy par unit volum, I =
fntamel anergy and p = pressure.

Equetion (2.6) ie hyperbolic lf preenure ic an
imcruefng function of deneity ●t cometant mtropy.
Thim ie the caee if we aeeume the ●quetion of ●tace to
be that of ● polytropic Saz, i.e. p - (y-l)Ic. The
pmematar y ie ● cometmt graater thm one ●nd ●qual to
the ratio of the ●pecific hcat~ of che we. For this
●quation of ●cate we have

●t conetant mtropy. The queatity c 10 called the
local ●ound speed of the gee and is related to the
cluracterietic velocities u, wc ●nd u-c of Eq. (2.6).

111. SPACE DISCFSTIEATION

To eolve Eq. (2.6) numerically we muet first
choee en appropriate ●pproximation of the epatial de-
rivative. The guidins principle in chooeimg ● spatial
●pprox~nction ie thst the diecrete -del mhould retain
●a cloeely se poeeible ●ll the cruciel propertied of
the ori~inel differc.ntial ●quatinn. Equetions (2.61
reflect principles of coneenation oi maes, ~tum,
and emergy which are the beeiu for the mathematical
theory of fluid d~mics. Theee propertiaE ehould be
preeerved in the difference formlatinn. Thie it beet
accomplished if th~ ●quetions me jnteBrated ●id dif-
ferencodim diverseace tom ueimg centered fiait~
differmcce.

Phaee ●nd MBP inn Errore
The derivative of the flux function F deteraine-

the pheee velocities of the solution ●nd hence the
Aock ●peede. Therafore, the ●rrore in approximating
Fand its derivative should be made ●s emall ●s poew
ible. These ●rrors can be divided imta two clmeee;
phaee or di-pereion ●rrore and dampims or dissipation
●rcore.

Tha ●elyeie ie beeed on computing the ●rrorc
for ns,9erir.al ●pproxktione of traveling wave ●olu-
tiotm to Eq. (2.6). Coneider the solutien to Eq. (2.6)
with periodic boundary conditions on the unit iater~al
and conetant initial preesure end velocity v. The



where

Tnez

is ● ●olu:iot of (3.1) which takes on the Imitizl
v&lueE #t tht grid poimtt xk.

To approx~te (3.1], we begin by rephcfng the
spatial derivatives with second order ceutcred differ-
xncefi. This rmsultm ti ● eystxm of ordinary differen-
tial ●quationc

Rt+ER-O (3.3)
r. I o 0 ...O -IT

Equation (3.3) cm eln~ be ●o~.ved aactly end J

tbk solution is

( 8 81:. 27k&x - ●!r. 4?Lx●4(k) =v2rkt l-—
12? LLx )

Ad ~~~.
34

The nuber of meeh points needea per wsve length for
● given error ● 18

The correspond~g reletionehips for sixth
order centered difference

(Gi)x u iPi+3-9Si+2*5Li+l-45:i-l*Pi-2-Ci-3) /(613Lx)

‘k(t)-j~-Niij‘~(’wi~bk-vjt)) ,

●re
(3.4) ●6(k) ~ & vkt ,

140 u:

and
where

●in 2-
‘~ m ‘-2FJLX “

Tho ●igeofunctiom of the ●pproxi-te eolution (3.4)
me the ●me ●s ia the exact aolucion (3.?.) but the
tamporsl ●igenvaluee differ. The ●igenvaluae of H ●re
purely &ginery, ●t they ehould be for s hyperbolic
operator, ●nd so ●ll the ●rrors occur in the phase of
:he ●pproximate aolutiott.

The principle of lioeer superposition ●tatec
that a general ●olutioo to Eq. (3.1) can be expremeed
AS ● ●m of ●olutiotm to Eq. (3.1), @ach of which con-
●iets of ooly ● ●ingle frequmcy, By uAAlyzlns the
●rror in each frequency of the eolution we can cow
pare the ●ccuracy of diffemmt nrmaricnlgettide.

Tha pfuee ●rror in the k-th mods is

t
●2(k) - v2wkt 1

)
●in 2wkdn

-~ ●% (2nMx)2. (3.5)
I

Ha dafime Ff2 = (&x)-l as the nmbar of mesh points
per wave lmgth. Tha ●rror can be expreard ●s

3
●2(k) ■u vkt .

6<

Chsemt thet the phena ●nd W- ●rrors of
tha approximate solution are related if the imitial
valuem consist of ● ●fagle frequency g(x) = ●rp(2wikx)0
than tha MXX ●rror of the approatite eolution ●t
tha mesh points aj is

IIP(xj,t)-nj(t)!l

‘6● 2“(*‘kw“
When the initial valuea consist of ● single mode

then for ● given pheee or =xlmum ●rror the relation-
●hlp batwaan the nwobet of mesh pointm naeded par wave
length is

or

Bf2~0.3+0.12~ .

ThiIs re?.ationchip is independent of the fre-
qumcy, the phase ●rror ●nd the computation time. The
table below compares the nmber of points par wave
langth naceasary to obtain ● given accuracy u-ing
eecond. fourth end sixth ordar centered diffmrencam.

9nd 4Lk eth
●rdar nrder ar4rr Accurhc}
1:$ n: Elb ●/(vk\)

P

Table I.

0 s &

16 7 5

M 10 7

u 16 I

laa 19 10

2S6 13
F’o?tits ptr wta;alangth for
sixth ordar difference to
accuracvo

2.6

O.es

0.16

0.04

0,01

O.uozi

0.0006
●acond, fourth and
heva the same



ntmeriully fc: a::=:a:ie: G“(>k:” 0 :.{::: r: L::,.-
grattic the dis:rt:c ●q”ticions ve:: ●:c::a:t:: ::.::.::
tbt.

10 ● cAlcLL~:iDL vherc the xlu:io:. CC:.:ZL:Z
mm diffores: frequec:ies, tht hi~k =~dts (1-S POK.:S
par uxwl-g:h) ●re spproxketet ●qually pocrly wit’.
●ll the -thodr. The middle mde~ (6-lE p:i:.:c pt:
wavelength) mt c=-wtet m:t. more •::~:a:t:y t-i:r :rl~
fourth cmd sixth order tiffer-ces t%a:. w:::. tn:
●etond order me:hai. c Tt,t cixtt, order ei!f~:e:,:ts a:t
more ●ccurate for tht lower modes c!.G:. ei:iit: st:c:.i
or fourth orde: di:fc:ences.

The rt:acio=skiF of th~ ●ccuracies c! the
differaot w:hocs cou?ared to tht m=be~ o! pciz:s per
Wavel-gtt. ie ●vem Wre @ressivc i:. highe: cxxn-
● iona. zo w: s;a:t dimensions the n.~be:s. :: :a~;c !
should be squarec; fz three dimensim.s cubti.

Tlmre art dieedwntages fn uehc r.hc MgY,e:
mrdar differences. They require aorc work to ●V61UAL&,
there is the ●dded complexity of ●dding two or thret
fietitioue po~tc ●t the botmderiec, ●ni the differen-
tti difference ●quations (3.3) ●re stiffer, renult~
fm wre str~gent ttie step romtrictions. (Sek
section VI).

The -O-US imcruse in ●ccuracy outweighs all
of tlnse dindvantaees. The difference fo-las are
-r. costly to maluate, but -It of the computer time
ia repentevduetfag the flux fun~Lione, not differenc-
ing th. The ●ctual increene in computar tiae is
only ● f- percmkt uh- the ~ nmber of mesh pointe
●ra ueed in kth ● second and ● fourth order
ulculxtion.

The mdditiooal complexity or ●torage ●t the
boundzry cannot be -voided, but it ●hould not deter
the uee of high order differ~ce in the titerlor of
the region of titegration. It is decireble but not
cesemtial thet the boundary conditioue ●re approxi-
mated to the cams order of ●curacy ● used in the in-
terior. Wumerical experbente luve ●hum that the
evarall quality of the computation increeue when
fourth or sixth ordar differences are ueed in the
intarior imtud of ●etond order diffmzncae evm
when the boundary &pproxf.mtion r~ias ●t only second
ordm in both calcuhtione.

The othu diudvantase of high order differmcao
le they detreeee tha upper bound on the tiaa #tap when
c~rd to ●cond ordw differencac. The ●ability
bound is reduced by 3/4 for fourth order diffmencas
end bill for dxth order. Thie in mot ●e wvmre ●

rutriction ●s it might ●m. The etability bounds
of the itmrated mlti-mtop metbds described in Sac-
tion VI ●a greetar then stamderd uplicit methode.
A2mo, the ●tability limitin proportional to l/Ax.
Uhen using hi~h ordmr difference you need fewer
poimte to ●pproxfmeta tha ●olutiomtith the ●ame
accurecy tbn uhm using louer order diffcremcu.
Uhan the mmber of meh points is reducd, the upper
●tability bound on the time ●ap is iacremed. Thcre-
fure the overall wrk la a high order approxtition on
● eourm meeh MY ba much lue then a lower ordu cal-
culation with the @me ●ccuracy on e finer mech.

Tlmmezt 8tep is todotamf.oe if thie liswr
CUA2ymin ie ●pplicable to nodfnexr ●quet%mne vith
●hocb md oomtact dietoatinuitime. Pigura 1 dim-
playe the eolutioo to mm hitial vhlue Probla for
Uq. (2.6). Eechprobl=ms enlved twice, tht -Y
differonte bein# that tha 8pctial df.lferancaeuera
-arid from aecomd to fourth ordm.

The exect trevelfasnve eolution (duhd llae)
end c~utd eolutf.om (solid line) to 4. (2.6) with
T=l ●rc ●- in Fi& 1 ●t t- t=lo 20 thin tclcu-
btionua wed •~t mcah points per wevslm~th.

1 --——.— — . . ——:. -. ,,

0“” z
Fig. lC 2-rid order

IV. BOUNDARYCOh~ITIONS

lrFl !

0’ 2“
Fig. ld b-th order

Before calculating the eolution to ●ny differen-
tial ●quation one thould detexmine if the boundary
conditions ●re comcistent with ● well posed p: obiem.
A numerical method cannot be ●xpected to generatt rea-
●oneble results for a problem which does not hav~ ●

well defined reasonable eolution. The importance of
proper boundary conditions cannot be overetressed,
the boundary conditions ●xert one of the Ctrongest in-
fluence on the behavior of the solution. Also, the
●rrors introduced into tbe calculation froz improper
boundary condition per~ist ●ven ●m the mesh tpaciag
tends to zero.

A comon error in prescribing boundaxy conditions
for hyperbolic ●qustionsj such ●s the Euler ●quationa,
Is to over or under mpecify tbe number of boundary
conditions. tiermpecification UCIUS1lYreeultc in
nonemooth eolution~ with mecb oscillations near the
boundav. Vnderspacification does not insure the

molution ia unique end the nueericel eolutior may
tend to wander ●round in eteady etate calculations.
h ●ither caee the reuults of the calculatio~ ●re
not accurate snd one ●bould be slepticel of even the
qualitative behavior of the eolution.

Uhen incorporating the boundary conditions into
tbe diecrete ●quations tbe ●pectrum of the dimcrete
operator should be perturbed ●s little ●e poe~iblc
frm the epectrum of tbe differential operator. Thi~
can beet be dane by en forcinK con~tituent relation-
●hipe on the difference ●qua~ione ●ucb tbet the dis-
crete ●guetiong ●re concietent with ●8 manv ~n-
mhipe that can be~ condltiono
ad differential ●quation ●s poecible.—



tion

heve

●nd

to L, PU, end E to preferably fourth-order.
Combining Eqs. (2.6), md (m.]) ●t x = X. we

o= (PM] =-(Pu)t= (Pu2+p)x=”px= (y- 1) Ipx,

Ex = 1P(I+ !4Uz)lx=o,

(pU)= =-( Pt), =-(PJt = o.

6ince these ●quations ●re valid for ●ll t- ●ud T* 1
we heve

p==m=mm=Ea=O (4.2)

●s ●uxillary tounda~ conditions ●t x = x con8intenL
with tbe original problem. Thic procedur? can be con-
tinued to give

P =m =E = o.
xxx Sxxx xxx

(4.3)

The nonphysical ●olution ●t the fictitious points out-
side the regiun of inte~ration needs to be chosen such
that ● finite difference ●pproximetian of Eqc. (4.2)
and (4.3) ●re satisfied ●t the bouodary.

When we replace the derivative in the ●uxiliary
baunda~ conditions by the -tandard cenLered five
point finite differences we see thet Eqs. (4.2) cud
(4.3) ●re caticfied ifend only if

p-i = pi, m-i = ‘mi, E-i =Ei (4.4)

fari=lar2. Thus reflecting the solution s~-
trically or antisymetric _ily ●c in Eqm. (4,4) msy
●ppear to be only first-order but in fact im ● very
●ccurate ●pproximation of the boundary conditions for
the themslly iRoleted bounda~ @ven by Eq. (4.1).

Ho Fictitious Pointc
There is 00=WSYS a -~le extrapolation for-

mula such •~ Eq. (4.4)-ta ●xtend Lhe eaiutian to the

fictitious points. For theme prablem~ it it often
better to uce unentered differences near the boundary.
This method will be described for the lbear hyper-
bolic symtem of tf cquetions

Vt x B(I)WX (4.s)

uitb the baumdary conditions
SiWo= b(t), x = 10, (4.6)

Difficulties arise in definiun the solution st the
bouoda~ when O <Rank(S) cRmk(ll) *H. If Mink(S) B
O then all tbe characLeristic9 ●re out~oint ●nd ttgins
@ither unentered differences M the polmte meer the
baundhry or -tzaight fammrd ●atrepoletiass to tie
fictitious pointt ~iveo ●ccurate results. When
Rsnk(SJ = M then ●ll the cheracterictics ●re emter~
the bounda~ ●od all the caepanents of the oolutian
can be ●olved for on the hossndary. Umcantered apmtiel

Approximetin: K= by second-order -e-sided differences
*:VCC Ua

Sk. MO= [SEo(4b’1 - M2) - 2Axb”(~)]/3 .(4.6)

where E =H(xcl. EqueL:sc (4.S) gives us ●dditional
tiforms?lon ●bou: Lhe boundary condatiocs tndt zs
consistent wltk bott tie original boumda~ condition
(4.6) ●dthe differential Lq. (4.5J. lf

()fink &o ~ ?!,

we srill dc not invt mougt. boundary candi:ionE to
solve for KC uniquely. By differentiating Et. (4.7)

with reepect to timt,
m(x~)= - SH(tK=)z = b“(t), x= x , (4.9)

●nd replacimg the spatial dmcivetive with finite dif-
ference we hove

Wlo(lio+sl) W. - sHJllo+2y.H2) s~ - (Ep13#J

+ 2c2 b“(t) - I)(Ax3) . (6.10)
to @ve um ●n ●dditional relatiomhip.

It ie often the cxue thxt Ho is nonltieer mad cht
●bwe procdure mst be iterated. Ueutlly one or two
iterations ●e ●ufficimnt for ● ●table accurate

.bouadxry approxfmtion.
Once W. bs been fomd we can uee -centered fin-

ite differeocea to ●pproximate the ●pmtial derivatives
wt the mesh paint neareet the boundary or we can ●x-
trapolmte the ●olutioo to fictitious pofmts outside
the regionof Integration. This extrapolation caB be

done by repleceing the derivatives f.n Sqs. (4.7) ●nd
(4.9) with second order centered difference end ●olve
fo? u-l.

Global Relationship
All of the boumdaty conditions considered BO far

heve been local. That is, they depend only on tbr
value of the solution ●d its derivative ●t the boun-
dery, independent of their walues in the interiar.
Some of these boundary conditions ●re derived from ●

global relationship. For ●xemple, the reflecting
boussdery condition (u=O) is related to the ctbncema-
tion of mess,

+ J:-=-r(’u)=dx=‘pu)~‘Pu)l‘o
&sppa8e the sal~tion satisfies the functional

#label relationships
h(W)=O , j=l,2, . . . K (4.11)

such ●s tbejconservation lews for US-, mment~ and
mner~,

r

(t)
h (W) s

J
Ux+Rj(t)=O.

J
(4.11)

o
These functinnel relationships ceo be ●pproximated by
their discrete Snala- ●qus:.ions

E(W)=O , j=~,l,2,. . . k (4.12)
~er~ thr discrete fussctiomxl b ●pprox~tem the b
with ●t least the ●me order ofja,:curec-y ●s the finite
dif:”eremce ●ppraximetion to the Euler ●quetionm.
The n~icd ●pproxktion of the 10M1 form of the
bmnsdmy condition- is not ●lways ●ufficien: to
guaresstee the @obal conmvatinn lawe they ●re de-
rived from. In these ●itultianm (umelly ●riming
when there ●re wing Rouldaries or boumdary lcyere)
the global relation should be incorporated directly
.imto the difference ●quxtinrm. This can best be
done uefng ● numerical technique bmsed On the work
of Ieeeceon (1977),



since
coa~ictefit
functional
For msmle, the uea! form (See Lax (Is;ijlcf the
Culcr ●qhatioc$ caL bt Writtez &s

Il(b’)=j[v+r]cso
where 8 is ● 8rk!tr~rj test function. This test
fuoction can be chosen to vacisb outsid~ tbt re~,ocs
ubere the colutio: ic tG b varied. The tire: der]~a-
tive coc bp resih:ed by finite difference! SL:L a~
tie ~apizodial rulz-

or s- other ~.iicit difference forwia usini tt:
solution ●: t = (n+l)bt. TbP spatial deriva:ivt} ●ud
imtegratioc ●re botb spproxhated by flnitt.dlfle:-
encec.

Once the sclutio~ sat~.sfying (4.12) has bee~ ●d-
~mced frou t = OM to t c (n+l)At 5: ●m’ n=erlcal
wthod there is ● residual ●rror in the f~ctional
xelationzhip

The molutionat t- (n+l)At is then -ifiedby
MwtosIs method tc reduce this smidusl ●rror.

In ● actual calculation ona rsrely needs to vary
Lbe solution ●t all the -ah poimts end restricts the
iteration to w~~ing the 8olution ●t the points &n 8
oaighborbood of tbP particular problem cauai~ 10SC
of conservation, ●uch ●s ● movias bouridasy. In one
d-ion this usually wanr only one or two points
oead to be -dified, in higher d-nnions the itera-
tion BOY include one or two lioes or planes of points.

2mbedded Re~ions
There ●re many initial boundary walua problma

where it la ●atiential to introduce ●rtifici~l buuod-
●riea to reduce the computing tbe ●nd ●torage of a
calcula*.ion, These problems ●re uauolly posed in ●

douin much larger than the cubreuion where the ●olu-
tion la of interest. The cubregion ia blocked off
●nd imbedded in the ori~inslprabl= by :reat~ arti-
ficial boundaries. The boundary conditions ●t the

●rtificial boundasy ●re chomen nuch that the ●olution
on the full domain would automatically satisfy these
internal boundazy conditions if the full probl- were
solved. The goal, of course, ic to approxbete tbe
original problem ●a closely ●a posoible on tbe reduced
domsina.

~e boundary condition- must be consistent with
● well posed initial boundary rtlue probl~ in the
reduced ~in. ~erapecify~ the boxoda~ condi-
tion inaurea siving the wro~ onwar end underapeti-
fyi~ the9 doea not guerantee ● aniqua ●olution.
Thus one mat be tareful to preaeribe tbc correct
❑tier of boundary cooditiona ●ccording to ● liMAr-
ized ●mlyaia of the incomi~ ●nd outto~ character-
iatica ●t tbe ●rtificial bouodery. Tbeae problaa
canoot be wept way by usin~ one sided differences
●nd Including ●atra ●rtificial dhaipation to ●tablixe
tbe results. Invariably, wheu tbia 10 don.. the
nmarical oolution in wbaonic flew probl~ will aot
be ●ccurate.

W will now describe a cqutotionolly efficient
opproach to incorporate ●n ●rtificial bouodary into
● flw which ●voida both of theee conatrmilte. Tbe
-thod ~eneralixea esaily to Mgber dinoa:.ona end to
ayatae other then the Euler quetioax.

Consider tbe initial boundarp -clue prebla for
the Euler quationa on the belf line [0,-), with n-
flectin#boundary conditions #t s4, ●uppose we ●re
Interested only in the hdavior of tbe ●olutioo in the
internal [0,1] ●nd wish to xeatrict the daein ef our
~utati- to a neiShborbood of this ?eSion. First
w nap tba the interval [1,.) into [l,b) uitb ● -p

SLICL●s

{

x C:x:]
y. (4.1s)

b+(]-b)/~ ]<xcb

in this sw coordnate syatex Eq. (2.6j transfo.~s to
bt + s(y) Fy= O , yclo,b)

where

{

1 O<y:l
S(y; = (-.lf)

(b-y) /(b-Y)2 ]<y<b

~ne c~lu:lon to (4.16) ia identical tc th: cc]u:lon
of our origical problem. Tberefcrc, the tracsf.mt~
●yctex has the correct number of siynsis ●nteric[ ●od
leaving ttroug! :hc ●rtificia! break pcin: ●t x=:.

Tbc ●quk:ly spaced ~est OL [C,bJ corres~o:ds LO
a variablt geEk ic the origin-l coordmtte syst~
Tbt variable mesh ●pscinc is constact in [G,:] ●s:
increases ic (1,=).

In this trmsfoxmd •yste~ a wave slow dob= in
the reuion (I,b) and ●ppronchea xerc ●peed ●s x nears
b. Tbia cauaea s wave train to cqueeze up, witk the
lwrr frequencies behq puabed into higher ones ●s in
Si8. 2a below. These h~gb frequencies cannot be cor,e-
puted ●ccurately end it ia beat to ●dd some dissipa-
tion to damp the9 out ●s they ●pproach tbe transformed
houoda~ b. This damping should be cboaen such that
the aiguala propagating into the region of i~terest
[0,1] depsnd in sme ●enxe on ●n ●verage of the solu-
tion outcide this region, i.e. [I,b). Apoasible
form for tbe diaaipation is

Wt+ ●(y)Fy= (Ayd(y)Wy)y (4.17)
where

{

o o:y~l
d(y) =

6[(y-1)/(b-1)]2 1 < y:b.

~Tbe graph in Fig. 2b ehowc the functional form of the
two coefficients. Notice that the ●quation is un-
changed 10 tbe interval 10,1] and becomes parabolic
in tle internal (l,b]. In fact ●t ~b the ●quation
redu:es to e a~ie diffusion ●quation.

Im/d
● n

BOUdOV conditions must be given for all the
variable- ●t -b for tbe prnblem te be well-posed.
The boundan condition for steady flow ●t infinity
(U@) gave the beat results in ● meries of tebt prob-
lm .

BY Wedding tbe ●quation in the subregion into
● well-c,oaed problem in ● cli@tly lar~er domain the
difficulty of maintaining the correct ntaber of bound.
8V conditions ●t the ●rtificial bounda~ waa ●aaured
●ut~ticallyo Furthermore, tbe infomatim entering
tbe region ●t tblo boundary dependa on soee #lobsl
●vera~e properties of th ●olution outside the ●ub-
rogion.

Tbe namber of points outside the $mbedded ●ub-
rogion for the ●pprogisotion to bc ●ccurate ●nd pre-

vent wperfluoua reflecthnx dependt on the atrensth
of the eut#oing wavea end their angle of incidence co
the boundary . The ●tronter the wave or the ●mailer
tbe wle of incidence the ~re points are needed.



Ch.aracteris:i: Tom
10 problamb where the ●ohtion is sensitive to

*appr&*tion of tie boundary condition ituy
be more stable to transfom the boundaq condi’.iacs
or tbe equation into cbaracterittic fem. TM ●r.?9-
pohtioo formulas ●re tbe~ derived to ●xtrap@lhLF tke
ou~oin: cbArscLerist$r wariabler to the f~ctitlous
poi.n:s . ~ese fom~las, ●t before, should xc:e~=rtte

6 ~ny relationships that can he deriwd fron Lhe
boud.a~ conditions -d differential ●guetioz as
poscible.

At # subsonic inflw hounhry the bounda~ cond:-
tiosstshould be of tbe fom

u= Ol(u-c) + pi(t)
. (L.lE)

and
QJ+c=a (u-c) + @ (t) ,

ii
(4.19)

whera ai mod @ ● ● functia c of t ●lone.
80C1C outflsw &undary the boundary conditio% %:ld
be of the form

u-c = a u + a4(,:+c) + p (t) .
a i

(4.20)
When the flow is upersomc ●t th boundary then
●ither three or no boundary conditions ●re given,
depending onwhet.ber it is an tiflow or outflow houod-
●ry.

Characteristic cariables are ●lso Iwportml when
no amount of ●lgebra seams to yield enough relation-
ships to uniquely define ●ll the solution variables
●t the ficti:iou8 points. Uhan this happens ossc im
forced to ●xtrspdate on ●ae of the variables without

any bounda~ relationships to guide the utrapolQ-
tion. It is uauslly host to utmpol.ete on outgoing
chara~teriatic variablee mod uae thair vmiuas ●t the
fictitious painta to provide the utra needed io-
formstion.
Diff~rential Form
— Ulwtever ●x:rmalation formula is used there MY
be ●ow inhermt trkcation ●rror in the utr-pahted
●olutioo ●t the fictiticua painte. Sme of these
tnmcation ●rror- can be ●li.mismted by changing the
differential form of the ●quatiara~ the boundary.

For ●xample, tbe reflecting boundary condition
(6.1) end (4.2)can be ticormrat~ ~ the Euler _~-
tiona ●t the bossndary to give

(N3a ‘0
(6.21)

●t the boundary. By difference these ●quetionm,
raLber then Eq. (2.6), ●t the boundary we have pre-
vmutad some of tha posaibla trwncatioo mcrora Inbarent
in the utrapolation fomula, frm creeping into our
calculation. Tbim is true evesswben the extrapolation
foswlat ●re based on a finite difference approxima-
tion of the boundary condition differential ralation-
ahipm.

Notice that themodified Eq. (6.21) has baaD kept
in diverseoce fem. Thim is particularly important to
maintain consemation when ●bocba ●re reflectedat
the wall.

UsinS the modified differential fozmof the
●quations I- ●apacially hportant when there ia ●

removable ●i~ularity ●t the boundary. TMse term
should be raplacad by their ●quivalent form obtiined
ua~ L’ti6pital ’a rule,.
V. 6RTIHCIAL DISSIPATIM

Artificial diamipation or ●rtificial vi-comity
IS a special form of tnsucatioa ●rror ●ither inheromt
to a finite difference app?omfntion or reaultims
from ●xplicitly ●ddint ●n ●dditional tem to the tqma-
tion. The purpome of the ●rtificial te~ is to raove
many of the m-rical difficulties by diasipat~ or
da@ng out tba hish frequencisa of tha solution.

Tkis •~~roa:L do~s ir. some 9eDbG mot} q the ●ffects
C! the VibZGkS ~L? d:cc:pt:w Lercs ~:caraet IL the
de:ivatio; ef tbc ~~ier ●qubtionb in that it primt:ily
d~ss~ptte} the hl~t mve nwberb, but it has little
LO dc vitk true beat dza&ipaLioG or viaca6ity.

There ●re five prima~ reaaonc for imcluding
-artificial dissipation in the ~ricsl ●pprox-tion.
They ●re:
1. To ●chieve proper eotrOpy production scroes shock

fronts.
2. TO solve tbc problem of the emersy csicede when

computlnf OLIY a fimte n-her of modes,
3. ?0 campensste for ●paLial ●rrors, ●ucb st the

Gibk’s pbenameno~, -Jr diaceotirmt~et im tbe
eaLucioL.

4. ?a campesmete for the dimper8ioD ●rror in the
numerical schemt.

s. TC stabilize cPrLain time flifferenci~ methods.
The form of ● aaod *rLificial dissipation tirm

tailore~ far ● particular probl= will depend on which
of tbeae pciots ●re react important. It is therefore
●saentiml to designing ● nsmerical =tbod to tie ●

basic mnderstandlng of ●ach of them. In thim sec-
tion ue will revi- ●ach reason far ●dding artificial
dissipation end suggest ● fom which will, witi luck,
work for ● large clast of prob?.rns.
Entropy Production

The most can reason given for ●dding ●stifi-
ciel diacipetion ia ao thet one cm calculate ●bock
waves. Entrcpy increases acro~s a chock front, but
Eq. (2.6) has nomechsnimm for the Lsscreaae. Uemust
add ● -cm to the ●quation which will ●now mntro~;
to increaseby tbe proper XUCL. l’he term ●hotsld be
in somsemation fom to maintain the Rankfne-Hugoniot
jwp conditioma ●nd tharefore ~iwethe correct ●bock
●paed.

Another desired ●ffect of the ●rtificial dissipa-
tion is to uooth out nonphysical diacontiauities -
the flow. That is, it would be ●dvantageous if the
artificial dissipation were fomulated in such ● way
that physical shocks ●re stable and nonphysical sudden
c~resaion ●hoLks ●re unstable.

It is ~ortant to ●dd ●nough ●rtificial dissipa-
tion to ●lltiinate numerical oscillations ●round the
shocks. ~eae oscillation- can destroy the accuracy
of the calculation by cremtint nonlhear inatabilitie~
or Introducing nonphysical feature~ in the flw much
●s nesative mas or pressure. The oscillations moy
generate new ●rtifactm into the calculation ●ucb that
the numerical calculation iD s~ble but converges to
tbewronsaolution [Harten et. ●l. (1976)]. In
reacting flows theac overshoots can trigger ● ch~cal
raactin ●nd lead to maaninsless reaulta.

The energy in the high modes in ● maigbbozhood
of ● shock is dissipated ●s heat in the phy-ical
●ystam, but not by Eq. (2.6). It would be ●dvanta~eous
to tune or shape Me ●rtificial dissipation so it has
s much stronger dissipative ●ffect on the high mode$
than the lW ●nd ●iddle modes thuc ●inimizias the
Asupingwlll be in amootb resiona. The middle range
frequencies will still be ●dequstaly rapreaented to
give eccurate ●bock speeds ●nd the dissipation in US,
Msbmodes will in ●a aenae ●pproxhate the phymic
mitutationm

The ●rtificial diamipation can be shaped by ueins
U@ even order epatial derivatiwas er usins ● aon-
limaar term. Real heat diaBipatiln mod *ircoaity ●re
repreoentmd in the ●quations by second order spatial
derivative terms ●nd ●re not well tuned for mmerical
caleulatior.. An ~ortant faature which mumt be con-
sidered in designing ●n ●rtificial diacipative tam ia
that one is c~utissg with only ● finite nsmber of
ties ●nd the tr~e viscous ●ffects uauelly ●re dapend-
-mt on high modes outside tbc rtelm of the camputs-
tiem, or the hiti wdea that ●re poorly cti?rmmnted by
the n~rical =tbod. BY ●cknwled@F! that we don’t
(or can’t) ●pproxhatc the true di-ai.~ti?ea ffactawe



Emerry Cascade
The ●econd wjor”reason for adt.nf ●rt:f;:;i;

dissipation is tc solve the energy cm:cade F:GLiF~.
~ttaliy, ~nergy ●nters tbe syswe ●t 10b UEVE

~FB ●nd camcad- srpmrd tbrougt tbe bi~!. wnvt
~rs uh~:e it as evmtulls dlssipited by m-ie:~?a:
wisco~i”y end ●nterc the systen ●s beat (Koh:g:-:ff
hypothesis). In nuntrical calculations tbr Sfierr:.
spectruo it limited by the number of rnesk p&icLs.
When there is DO artificial disslpatloc ic tie sYsLec
the ●nergy cascade back~ up ●t the higher frequecc~ec
●nd mbwc up in the calculation ●s high frequrmcy
moime or tracb. Some of this energy is ●liased or
reflectmd back into the lower smve nmbers. Th~
closed loop eoergy cascade can destroy the ●ccuracy
in ●ll wave nmbers during even moderately short
Cqutatione.

Gibbs Phenomenon
The third resson for sddiaz srtifjcisl discirm-

tion ia to c~ate for the &xactnets of the ;pa-
tial ●pproximation. These ●rrors ●re due to ●pproxi-
mathf ● function by an interpolmt uhoae value6
●gree uitb the function ●t ● dimcrete ●et of =sb
points. The ●rror- io the interpolatrt ●re met awere
rear discontinuities in the function being approxi-
mated. At these pointm the continuity conditions
ueed to derive the interpolant break down.

Equation (2.6) preserwcs the positivlty of the
dmsity of the solution. In Ceneral, hovever, the
numericsl interpolsnt doe~ not. Adding ●rtificial
ditsipatinn to tie numerical ●pproximation damps the
high frequanciern ●nd helps prevent the 1O-R of
Positivity.
Dimermioi Error

The fourth ●nd fifth resson~ for ●dding
artificial dissipation are ●lso to cmpencate for
ioeccuraciem in the nrmerical method. Dispersion
●rrors cw from the inexfictnemc in both the t- #nd
cpace differencing wtbods. The dispersion ●rrors due
to the different modes of the solution travelliag ●t
different ●nd incorrect velocities can accumulate ●nd
de-troy the ●ccuracy of the computation. Thio is
particularly true for the higher modes even in calcu-
lations of flova uhicb ehould have only SOth ●olu-
tiow, Increasi~ the ●ccuracy in both tbe the ●nd
opace differencing methods will reduce the dispersion
in the “OVsnd ●iddle frequmcies, but not the high
mode-. It is best to dq these out by some form of
●rtificial dimipation.

9-bi~- tion of T- Integration lie thudk
Th9 eblUty of ●rtificial diemipation to

●tebiliae ~mt my othe-.ut be en unatxble time dif-
farasciosmthod for Bq. (2.6) Llao in the fact chat
it ●hiftm the epectrmof tho spatia3 oparator ●uch
that thm ●olutlon to the modifiad ●quatinn18 mathe-
matically ad -ticelly wra ●tabla. Thin 18 upe-
ciaUy tnn for ●uch ●tenderd mthoda as forwrd Eulmr
end kprwed EU3U.
Differtitisl Fom

For MY W*l- the ●rtificial diaeipation in-
herarst to th. ‘W inteeratim mthod S, ●ufficimnt to
~eosmta for tho ernrgy eemcmde probl- and elao the
entropy production in -k ●hocka. For ●trons ‘]hoeka
it is necamssry to ●dd ●i~ficantly mre diemipation.
Thm =tr& Aimeipetioncenbe eddud by explicitly adt-
ios ● slimsip”,tiva truncation srtor to Eq. (2.6). l’hi~
is done in ell the mhotk cehulationa in Baction VII.

-.
dnrz m.?i!id •;~z:is: for tkst ul:da:ioos a- be
W~ZtL:. 6E

Et + Fx - (LxkdK=)= , k = 1.3 f5.1)

where
d -6 (%) ‘-lI;W~- L (g) ‘-ltI~ + c)’ U.2J

end ~x is the tirgeG: characteristic velocity of the
sys:e. aci t is called the ●rtifici.d dissipation

eo.sfficier.: vhert !BP if kDl an~ fcO if k-?.
It =! se- strings at firs: to uze ● firct or

●v~-. tk.irt orce: a~:ificia~ dissi?a:ior tern vi:!. a
fourth or cix:fi order ●pproximation of the derivative
of the flux function. It calculations with ●trong
sho:l. waves there is not duays ● one-to-one correLa-
tic: be:weec the fe=l order of ●c:uracy of a differ-
ence ●chamt and :ht crut ●ccuracy of the cdculaciofi.
Tht WS: rtli.akk ant ●ccurate HZifiCU2 dissipa:ioL
terns kaoun bappcn to be of low ordc. ●nd we ue stuck.
with them until better ones m be developed.

VI. T= D7KRITIZATIOK

M ebstig tbe “beet’’ntmericel ~thod to ti-
tegrace tbe Euler Equations through tke one bea 20 “
consider the accuracy, etability, storaee raqwi.re-
‘meets,computational complexity and the relative cost
.nf the different matboda. tiae fettoru●re depen-
dent on each other and tradeaffs must be medt ●s to
which critaria are mre bportant for ● pt.rticulm
probl~.
Spectral Aaalyais

lkth the plume d d.nmpin~ ●morn depend on the
cpectrm of tbe differenctil. ●quation end tba time
8tep sise. The tine step CM be varied during tbe
calculation to reduce the nrmerical integration ●rrort,
but the ●pectrm of tbe diffarenttil ●quations ia de-
termined by the spatial difference operator. A Sood
integration method depends on bow ●ccurately Lt can
integrate ● particular aet of equations. For this
raaeon the spectruu of the epetial difference operator
is tha -at importent auide in selecting an ●fficient-
numaric~q method to inteurata throuuh time. The
spectruu un ba detemined by enalyzins the lin-rizad
continwua tine - dimcrete apace approxtition of the
partial differential ●quation.

Equation (2.6) ia solved ●fteraddln&!mrtifi-
cial dieaipation md therefore ma muet analyze ●

eyatm of the form
pt + p= = 6Aw= . (6.1).

A ●eaul-diecrete ●pproximation of (6.1) resul”.s when
tha ●pati.el darivativea ●re ●pprox~tad b> finite
differences on ● meeh of N points. This Wat- can be
writtenin tba form

#-Ay+6My=cy=f(-) (6.2)

The prima denotea the derivative by y with renpect to
tine and the vector y la en array of the app:oximata
ed ltinn at tbe moah points.
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Fig. 9, The ●igenvelues of AaC



llhen ●ecmd-orde~ centere< difference: ere CCC:
the ●igmvalues cf A are Imaginar>, tk;~ tiF6:.V:.LzS

of B negative real. ?he ●ig65_OJa~Ue6of C arc CCE;LU.

end lie on ch~ ellipses graphei it FiE. 3.
ut hell firm analyze Eq. (6.2) when th=.’ ia

no ●rtifictil dirnfiipation (i.e. @O) -d ~ter i.nclud~
the ●ffut~ of the dissipation M ● perturbation on
this ●quation. h’hen @OEq. (~.~) is dispersive ~::
the ●igmvalues cf h lie on the Imet?tiv mxis. s
●lganvaluea, 1, are ●qual tc Iau, i~(fi) -t i~(~-c~w
where o depem!s upon the opati.el order of ●pprcx&-
t ion. Uhmo second, fourth or sixth order centerei

differmcea are ueed end che bmmdary conditinna are
periodic on the unit intend the corree~ndbg 0’6

me

m2 = (sin(2rjLx))/Ax , (6. 3)

%
- (8 8iL(2rjLx) - si.n(47jLx))/6:x ‘, (6.L)

●nd

a6 =(sin(6rjLx)- 9 sim(&rjAx)+ 45 mia(2wjh))/30Lx (6.5

for
j - -N12, -S/2 + 1, . . ..K12 ●nd AX - IIN .

To facilitate ●tudyimg the propertied of differ-
ent tka integration methods we use a well bmown re-
sult from ordinary differential ●quations. The isole-
tion theorem, - (1967), ●tatee that the stability
end ●ccuracy of ● numerical integration method for
Eq. (6.3) is detemtied -tirely by how it ●pproxi-
metes the decoupled diagoneltied syetmm

f - iiy , (6.6)
Ait

with the solution yi(t) - Yi(0)e where the Al
ere the eigenvalues of A.

Numerical Methods
Eqution (6.6) (hence (6.2)) ie ● ~ltirate

sysbmn of ●quatione since some ODE component change
on vaatly differant time ●cales then others. These
syetems can ha..? accurecy and stability restriction
that can make standard explicit integration . Xbds
inefficient.

Ue now deecribe ● new claaa of numerical
methods, called iteretive multietep (IW3) methods
that overcome some of the difficulties im eolving
multirate eystema. These methods are A-Stable when
iterated to convergence and converge to the emect
solution for linear ●mmnue eyeteme of equatione.

& ●xample of a comon itarative [but mot MS)
method is the forward Euler

(1)predictor: y-l - Yn + Atfn o (6.8)

add the improved Euler

(j-l) +#ht[f&l)-fn](6.9)corrector: Y:; “ Y*1

for iW 2,3,4... . Eere *1 refera to tima ttil and
i ia the iteration index.

The regions of ●beolute stability for this
method ●re 6ymetric ●bout the rmal exie amd are drown
in Fig. 4 , below

El 1 1

I

b!!!!!u
I
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Fig. 4 - Stability regioma for (6.S) for 1-1,2,3,4,-.

The mechmi is s:able if tt IF chosen small ●nough that
;: lie~ within itE scabtiity regioc. For Eq. (b.3)
thi6 must hoid for ●ll the ●igenvalues ef C.

The stability of the ~roved Euler mettmd
intrtisaa for the fliat few iterations &a aem in
Fig. 4 . After three Itaratinne the stability ●tag-
natea to the rescrictinn l~x! At < 2. ~en, ev~
when the method does converge, It comverges to ● unlu-
tion of the difference ●quation not the differential
●quat ion.

The IFfS method6 were developed on the premise
that if wt ●rs uilllmg to do extrc work by iterating
then it is not unreasonable to expect the ●tability
and accuracy tc bprove on each ●nd every iteration..
Theee methods ●re based on the ●tiple recurrence rela-
t ion

~(i; - (i-l) ● ~ (i-1)-f(i-2)1
, .tt(fn+l *1Yn+~ * (6.9)

for i = 3,4,... . That is, after the corrector cycle
‘) a differmt corrector la uee~ for each additional

iteration. The conetents ci depend on the iteration
count and the predictor-corrector method used to atart
the proceaa. The cl ●re chosen to imcreaae the order
nf accuracy of the method for ltieer ●utomuci syetmm
end eech ite:atim. Umce, when iterated an imftiite
ntmber of thee (or to convergence) the method 16 of
infinite order end convergee to the emnct solution,
i.e. the method is A-Stable.

The ●impleet INS method, celled the iterated
RuogeSMta method, la baaed on improved Euler where
cl- 1/1, i- 3,4... ● Tha stability of thie metlwd
fncrmaaes with each iteration, ●s ●lmwn in Fig. 5 .
For the firet fnur iterationa theee regions ●re ●qui-
valemt to the stability regions of a Rmg-Kutta
method.

!“ -

1-I
e-s -1 -1 m

h, ale

Fig. 5 - Stabflity regions for the iterated Runge-
Kutta method.

Othmr methods where the coefficients of the MS
mettwds have been derived ●re baaed on the Meme-
Ileahford-tbulton predictor-corrector ●equence, poly-
nomial ●xtrapolatioo with ● backward difference
corrector ●nd ● new Iaep-frng predictor-cr,rrector
●equance. Ee:h method hea a unique corrector ●equemce
ud differ-t ●tability regions. These ●tability re-
gione can be ueed ao ● guide to chose ● good ❑ethod
depending on the ●igeovaluea of the differential ●qua-
tinna being ●olvad. For axmple, the second order
leap-frog predictor lo given by

.
Y::; - (1-r2)yn + r2ya-1 + At(l+r)fn , (6.10a)

where

r- (tn-tn-l)/(ttil-tn).

end the third-order laap-frog corrector ia

Y(2; -“[(&r)(l+r)2yn + r3yn-1 + At(l+r)2fn

+ At(l+r)f~~l/(2+3r) . (6.1O)
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Fig. 6 - Stabfiicy reginms for the iterated lesp-
frog wben i = 1.2.3tid 4.

Tba lesp-frog predictor is tmmable for xptems
of equstime with ●igeovalues tuvlnE ● wnwro real
part. Ilm.refore, when ●rtificial di.uipetion iB edded
or the boLwIAary comdltims ●hift the spettm of the
diecretfxad ●quation the leap-frog method cxmoot be
used without tk corrector cycle. The firw corrector
●pplicationexrds the bad 00 the w.xk tiw step
by 502, facreeeem tbe metbd to third order amd la
●teble b ~th reg@ms of tbo eolutiom with or with-
out -y epatiel artificial diceipation. Another dif-
ficuLty@th USfng the leap-frog predictor is a tmique
typeof error due to tiweol epacerneb decoupling.
The odd end eveo pointe of ameb areom3y~y
cwpled whm fmtmgreting conservation hue 806 arore
with frequency = 2Ax can degrade the ●ccuracy of the
eolution with high frequercy noise. The corrutor
cycle couples the mesh points -g tbe three tim
lwelc end pratm:e this weak inecmbflity.

Awjor edvxmtese of the ~metlmds IS thmt
they aLlw for local bprnv-ts in ?.”- stabiLity smd
●ccuracy of the celcu.htion. Since rmly ● ●ingle tim
levml ie used in the iteration om.ly the ODE componmto
that Iuve failed to pane coma ucuruy test need be
iteratedon. Tbet ie, by iteretlag locally 10 regiome
of rapid changes ●uch me im ●hotk fronts, beundary
Leyers or reglow with ● reftied ~oh, the stability
end ●ccuracy of tlw celcuLatiom is *rovd prmcieely
where it i8 needed. Thie ●pproech cam be QUA in -y
probl~ with wvere local ●tebflity requirements
rather than tha wre complicated i@icit wtbode or
themetbd of Imdepmdax tiwsteps (See Porter (1977)>

Ukm fmtagrating tromltieer equetiow the 33fS
wthode reduce to th- order of the prediccor~orrnctor
or tiSwRutta ●terting wtlmde. The ●tability re@one
●till apemd with extra ituatiow but tbe order of
•cc~mcy r~fm the eae. me coefficimts for the
Y3t3matbode m ●lw be clween to imtruee the etabi-
lity by ■ maxti ~unt on aach iteration whtie ra-
taining the order of ●ccurecy of the stutimgwtlmd.

M!4uEz
TbemIDwical eolutinm of (6.8) for em

itcreti-e Ketep ntlmd can be uritt- la the form

(6.11)

~e ~~ A ie t~-primciple dgamvxlue of the dim-
cretixed equation. A.ftfmerical method IS stableif
Rx(A) <0 i@iee Re(Ai) <0. For -et nmti
wthod it is the Iergeet ●isanmlue ~ of the limeer-
Iad %yet_ that dstemimee the ●tebi3ity tomditiom.

(6.12)

Tr.is is tht usual tiur~t- Friedricbs-b~ ●tahilitv
coBditioL fOK -;lici: mt:hods Whe:. ●o]vicg Khc Lder
●quariona. If fourth-order centered di!fereaces art
meet In ●pac~ em? the leapfroF pratictor-corr e::er
●ethod in timt, tht comeEpontinE ntabillty conti:ior.
is

e“
‘t Cti m. (iu! + c) c 1.5

or

:Uz (Iv; +C)C1. U5 . (6.13)

notice b Fig. L thet enme integration ●chemes au:k as
foruard Euler ●re unconditionally unstable for ail
At z O when the speccr~ of the dlscrettiet system liefi
on the tiginary axis. It ie well b- thaL forward
Euler is the beart of WY etendard methods to solve
Eq. (2.6) mid in fact is not always unconditionally
~etable. This is because of the ●ddition of ●rtifi-
clal tissiptatinn shifts the ●iBenvalues of the
linearisti eyacmt to the left eo they Iuve ● negative
red. pert.

We caution the reader that this etability
wlyaia ie linear end ia not meceseerily valid for
highly nnnllaear ph-ownon ●uch u ●hockuaves. In
practice to prevent nonlinear Instabilities, it ie
seceasaryto restrict the tbe ●tep euch that ● chock.
will mot wva wre tkm one wsh point per time ●tep. .
&EkKSEY

The ●ccuracy of ● math~d depends on the phase
or diepereion error ● - ~(~-a) end the dempbE or
dissipation error edPRe(a-X). Tbegraphs in Fig.
show how theee ●rrors are reduced for hyperbolic
●ystaw (Re(A) = O) with ●xtra cmrector iterations.

Iterated RumSe-Rutta Iterated Leap-hog

Fig. 7 ‘pbsa error (-) -d dampimerror (--)
for the IRK ~ ILF~thods.

Thwe phase end damping ●rror dbgrems prtsent
-h wre relevant Iafomtion than m Taylor series
ttumation ●rror emalyeia io capable of. For example,
the phase end damping ●rror for the inproved Euler
setbd with ● ●ingla corrector CYC1O is elmoet the
negative of Ib pheea emA ~int ●rrore with two
corrector cytlee. Ihaefore, w wuld ●xpect ● large
iacruee in ●ccuracy by ●ltermating bet~een one wnd
~ comector~ on @very other the utep. This hm
hexm found to ba the ceee.

The time ●tep At .hould be cboeaI to be ●proxi-
ntely the w uize se tha time scale T for the
phemomammbeingwdcltii. fie ●tability restriction
for erplicit uthoda ree.:ires the time ●tep ba Pfopor-
tionel tn

k
● UZ(IUI+C)AX, the festest ei~al

speed end @ rtest time ●tele t- = 11~ of the



3’0+1- Yn+} (fn+ fn?l)

●nd the ●econd order backward difference forc;l~

7*1- [(?+1)2- r2Yn+Lt (*l) fn+12/ (1+::)

(6.lL)

FLemtr.za:2cr: c: tht rnr:ifi:ial tifisi>c:io:, &. (5.1],
wiii be 6es::i”5ei i~:e: L-. :k.i: se:tic:..

0! t?.t 021 nt:ho:s usti in Ste; 5 the leap-frog
preiic:or-ccrre::G: ●et! ! tis OUtFrefO~ei ●n: othe:
mt:hd we luvE teaLec. Zf the ●olutioc ean be ●torad
or. mare th~-. cm tint leela than tht higher order
4dem6-Ba~h!ord-ltoslron mettwC!E my be Wre cos!petive.
(Se~ Sk;iJM ●nt Grdon (19’5)).

Of the above deciBtinc, the ckolce of ● good
.ertificia: tisaipatioz te= bs$ the Bos: pmancid for
ic:rovti! a methci Iv’ tmtig it to a partiw:=r problw..

(7.1)

‘where
nci++ c +mh:+i- (di+l i -@(2s) e; - Li(:u!+c); .

(6.15)
wh-~- ThiE firs:-orde: fore IF used in alJ the tslculaciona

At each ttie step one mat eolve ● aonlin-r syatec
●qustionc with, say, the multigrid ●lgorithm, tee
Brandt (1977), or a noniterative direct ●ethod such
fractional steps.

B- =tly A end Uarming (1978) have
compared ●everel implicit ■ethods for the mmerical
●olutian of the Euler ●quationa. ~e metlmds dee-
cribed in their eurvey cm be Implammted uainc the

of

●a

s--” techniques for spatial differenciag, inco~porat-
.ing bodary eonditiana ad ●rtificial dissipation
that are deecribti for explicit swtbods In this paper.

7a calcul~tione when c ~ Iu! then the WS
methods ●re ewong the met ●ccurate wthoda avaflable
requirtig the la-at amomt of work. The time otep may
be varied co keep the ●pprox-tian within ● cercain
●ccuracy tolerance within the ●llowable stability re-
striction. This is ●aaily done with iterative ■ethods
by comparing the differmce between the predicted
value and the firat corrected value.

VII -ICAL HODS

Comoaite Hethodc
Tha meneral flow of ● ?B3Lcommter code haa

● well
1.
2.

dcf~ed structure. The code ~at:
Define tha initialconditiana for the PDEa.
Incorporate the boundary conditions into the

3.
4.
5.

6.

discrete ●yatem.
Evaluate and difference the flux functione.
Md ●rtificial diaaipation and deii.’ Ut.
Predict the solution ●nd updaLe the ttie
(t+t+At) cm correct the solution (it la un-
changed ) .
Repeat the cycle if the problem I* un-
finished (BO to 2).
In thin ●lgmitlm four baeic deciaione muse be

made in etepa %5. That deteminas the elgorithm. la
step 2 w recomend imcorp~ra:ing the buadary condi-
tions imo the diecrete ●yetm by using ficcitioua
poimta. Thie ●pproach can be used with any of tha pro-
cedural deecribed in Section IV. The utrapolatim
f~mla for the fictitious pcinte ●llowe mare freedom
to include Iaf-tion ●bout the YDEa and the boundary
conditime into the difference ecb~e than do~a using
uacenterad differeasee.

In Step 3 we recomemd uainB ●econd-order dif-
feracea only in the Ioitiel debugging stegee of the
progrem and later ewitchimg to ●t leeat fourth-order.
The higher order metkda reduce the phsea ●rrorm and
the emamt of artificial diaaipatian needed to stabi-
lize the calculation.

In Step 4 the artificial diaaipatian term ●dded
ia cmcial to the ●ucceaa of my numerical method for
shock calculation. Three of the better nmerical fm-

in the next ●ection.
Tberc ●re th:ee baaic typet of artificial dis-

=ipetioc mwitcbes which are natural to uae with pre-
dictor-correcter methods. The first, 16 to Increaae
the ●rtificial diaaipation coefficient t in regim6
containtig ● chock aod keep the dissipation small im
●bocklees regions. lo one4~sianal calculations

“when ● aback cen be detected by ● diecontimous ner.-
tive velocity gradient the ●rtificbl diesipatian co-
●fficient cen be increased accordingly. For exemple,
a Poasibla switch 16 to replac~ ~~
where a-l If dn+

h ‘7”1) by %
~ dn + (Ax/3) en$ say, a-1/3

otharwisa. ?h~s%ss ~roved to be en effective awitcb
im mny different calculations.

The ●econd type of switch changes the artifictii
alasipation coefficient in the predictor and corrector
cycles. Thie is a particularly good switch for the it-
●rated Runga+utta ❑athod. The forward Eu2ar predictor
cycle is leas stable (FIB. 3) ttwn the improved Euler
corrector method ●nd requires -re artificial dissipa-
tion to be atabla for hyperbolic equations. Ue, there-
fore, ●dd ● large mount of artificial dieeipatlon in
the predictor cycle. In the correccor cycle the arti-
ficial diecipatian coefficient AS reduced, wit to zero
or awn reversed in sign to ●dd antidifuscfo: ●nd
counteract the ●ffectn of the overly diffu:,f$ predicted
solution.

Baria and Book (1976) have developed’similar
diffueian/entidiffusion ewitche~ in their tork on flux
corrected traneport methods. Their cwitc.h~r are op-
timized for a particular ●pace end time di:ierencing to
maintain the monutonicity of the solution and decreaae
the plmae ●rrors,

The third type ev~tch ie deaigaed to prevent
concact diacontimuities from -earing b long-time or
ateedy-state calculetians by ●rtificially compreeaing
them Estcen (1978) baa proposed modifying Eq. (2.6)
by adding the derivative of an artifictil comprceaion
fmction to the right hand eide. This function ic
choeen such thatA chock or contact discontinuity for
Eq. (2.6) ia ● shock for the rndified equation. That
ie the contact discontinuity ie artificially compres~ed
to reduce n=ericsl smearing.

These improved artificial dieaipatian stra-
tegies all help reduce the n=erical ●rrora away from
●hocke, but no one method standa out ●a baat for ●ll
problms. For this reeeon it ie one of the mat ●c-
tive ●reaa in developing new rnthoda for the Euler
,wustiona.
VIII. ?ilJFERItXl RESULrS

Ri-nn Roblem
h iaitial value problem for the Euler ●que-

tiona i~celled ● Riemann problem if the initial data
consists of two constant scatea. The Initial cOndi-
ttine choeen in this example were ●lao ueed in a mumey



SE(x, o) - 0 U(x, o) - lJ
9(X.0) - 1, 0< x< 5; O(x,o) - 0.125, 4 < x < 1
P(x, fn - 1 p(x, o) - 0.1
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Fig. n - D8nslty and weloeity ●t t = 0.25.

Tbe problm US~ ●oivod 00 a mesh of 100 points,
with fourth ordu ●Pet ial dfif ●retces md a artlf icial
dissipation term ~iVOE2 by Eqm. (5.1) sad (7.1) with
k-i-l ad 6=0.5. The Itcratd km *ttn uaS used b

Ttk with oat corroctor cycla ●nd ~xat I - 1.
Uhm LM -n of tha ●bock tube ●rt ●pproxkted

by ● raflocting boundary coodition(E-q.(4.4))tho
sbck rofl=ts frm tha right bctmdary emd pamee
tbr~b th cmtact discontinuity by t+,< is FiIB.9,
below.

?18. 9- Smlut ion t=O. 5 tith rofl octiag bouodmry
editions.

This problcm was slmo mlvd ufth ● nooraflect-
irIS botmdarv condition ●t ml using tho upping techni-
que Civan by Eq. ($.17). fir-e fictitious points were
Intlwhd betweemx-l sod x-b-l. 03 h Fig. 10 below.
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0.0 0.s 1.0 0.0 o! 5 16

~, 10- 8oluti8n ●t t-O.5 with an artificial
bmmhry ●t w:.

Ibtie@ the ●kck hea pained tbro~h tbe kmdmry with
●-sk w reflatione.
~ Ruler Bouation,

Ihe g-srai on+imensional fon of tho Euiar
oqlMtiow ie

io\
@?)t + (~(li))m = PI AX dx,d-At

1

(li.1)

f@r C~iiT5:i:&l FW :yy ~.d A-z 2 foy 6Fhe?ic61 ST
Et:ry. 1:. ti. i+ ~::”:1-- A(}., t) i= tht crosf-6t:tiam~
ar~ of c k;:aifi-,~ cylince:ica: duct.

iht cylix, ic: is 10E cc long Lnd collapses st
a coas:~~: veiocity of 1 = per unir time fr= a radius
of 1 a tc 0.25 CE. The collapoe progresses up the
eyllnaer behind a h?ng~ frou x-O ●t t-@ tc x9$3. Q ●t
t-7. A ●hc.ck fen: is tht ga6 -d is maimtaioet ●t tbe
hinge locetioa by erpoamtially accelerating the
velocity cf th~ t,lnps.

This ac:icr. causes the COllap=hE cylimde: to
●c: ●6 a vt:c:i:y accelerator. Tt.ct 16, the ~.loding
WE1l pushes t},t gEs ●nd accelerates It U-Jtht cylti, ner.
Tbe velo:i:y C? thE gas iE eve: 20 time6 thE velo:i:y
cf the Coliapsti, g cylinder walls by tht tifOE it ha:
reached the end of the cylinder. A wrt dt:ailet i .s-
cription of tt.is P:oE115 cm b~ fount ix Cclg~t&
●:.e.l.(1977)),

initially the cyst= is ●t rest ma p-o.15,
P-1.3 and Y-5;3. The hinge is advanced ●ccordkg tc

b(t) - 76.93 6 (exp(bt) - 1)

where E = (y-1)/(1+1) = 1/6. A croso-section of the
cyli~der, tht gas vfilocity ●nd Mximum sound speed
(lu~+c) are chovo ●t tf.ws t_6 end 7 in Fig. 11
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Figi 11 - The imploding cylinder, the gas velocity (-)
●nd maximum cheract~ristic velocity U+C (---) ●t thes
t=6 ●n+ ).

This solution uted Eq. (5.1) with Ax-1, 6=0.75, fourth-
order diffarencas and the luep-frog pradictor-corractor
●ethod with l~xl.it=l.

xx, SOKHARY, CONCLUSION AKD MCONMLNDATIONS

In thio paper w have follmed s HOL approcch
to conetructtig ●ccurate and robust n~erical met!,odo

for hyperbolic PDEs derived frcm conservation lawe. The
●pproach has proved to be straipht forward snd IESB led
tn •~~ UCdlmt now methodc for SOIUIF2 the Euler
●quations. It ID our beliaf that a tiimilar ●pproach
nay yield some squally useful methodc in other “problem
araas” of n=erical analysis mch ●s tha Nevier-Stokes
●quations, reeetiag or comburntins flow and nonllnur
diffusion ●quations.

Aujor ●dventamc of the MOL mp,roech is the
-dular ●tructurs of the ●slysis and rewltins ctm-
pcter program. Theee codas can evolve ●fficiently
since this ~dularity ●llwe on. to tast, crmpare and
uBe the lstost nwerical mettmdn IN tho shortmst
~msiblo tire.



Dr. Don Duro:L an: Dr.Burtoc Geatrcf! fc: z ZS”:C: c:
. helpful discussions and euggeotimE Ic devtio;i.ni thE

aetkads p:esmtet in thin repcrt.
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